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ABSTRACT 

A new procedure is proposed to evaluate the effectiveness of surveillance 

satellites in circular orbits. It is assumed that the times of target detections by a satellite 

are given by a nonhomogeneous Poisson process with detection rate at time t of 

p(t) = f{A{t),ß^{t),ß2(t)), where A(t) is the angular distance between the target and 

subsatellite point, ßj(t) is great circle bearing from the target to the subsatellite point, and 

foit) is great circle relative bearing from the subsatellite point to the target. In some 

circumstances, the dependence of p(t) on ßj(t) and p\(t) can be ignored, making p(t) only 

a function of A(t). Then the probability of target detection on a single satellite pass 

becomes a function of only the minimum angular distance, or lateral range, between the 

target and subsatellite point. A numerical method using Newton's method is developed 

for computing the local minima of A(t). Probabilities of detection using this procedure are 

compared to those computed with existing methods of Wertz and Washburn. 
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EXECUTIVE SUMMARY 

Earth orbiting artificial satellites play a significant role in surveillance missions. 

To help evaluate surveillance satellite performance, it is important to find an appropriate 

measure of effectiveness (MOE). A reasonable MOE for surveillance missions is 

probability of detection. 

This thesis assumes that the times of target detection by a satellite are given by a 

nonhomogeneous Poisson process with rate at time t of p(t) = f{l{t),ß^(t),ß2(t)), 

where A(t) is the angular distance between the target and subsatellite point, ß}(t) is the 

great circle bearing from the target to the subsatellite point, and p\{t) is the great circle 

relative bearing from the subsatellite point to the target. Professor Alan R. Washburn at 

the Naval Postgraduate School gives an expression for A(t). Formulas for the azimuth 

angles ßj(t) and p\(t) are given here. 

If the dependence of detection rate on ßi and ßz is not strong, then it is possible to 

express the probability of detection on a single pass as a function of the minimum angular 

separation (or lateral range) between the target and subsatellite point. A numerical 

procedure using Newton's method is developed to compute the local minima of A(t) for 

use in this model. 

Four analytical models for estimating the probability of detection have been 

tested. Two are lateral range curve models using the methods of this thesis; the third is a 

well-known Earth coverage model; and the fourth is a detection model by Washburn. The 

numerical results show that the newly developed methods yield probabilities of detection 

Xlll 



comparable to the existing models. The advantage of the new methods presented here is 

that they allow more specific modeling of the target position, environmental conditions 

and sensor types. 
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I. INTRODUCTION 

Earth orbiting artificial satellites have been developed to perform a wide variety of 

military missions, including early warning, attack assessment, navigation, 

communications, meteorology, geodesy, surveillance and reconnaissance (Friedman et al., 

1985). As reliance on military satellites has grown, so has the importance of achieving the 

best possible performance subject to resource and environmental constraints. Appropriate 

measures of effectiveness (MOE) will vary with different mission types, but for search 

and detection missions, a reasonable MOE is probability of detection. 

There are many possible methods for using probability of detection as a satellite 

search MOE. Perhaps the simplest approach is to compute the fraction of a specified 

latitude line that is "covered" by one satellite orbit with a specified swath width (Wertz, 

1992). This method generally assumes a non-rotating Earth, but is nonetheless well suited 

for satellites in low Earth orbit, a common orbit for military applications. 

Washburn proposed a satellite model which takes the Earth's rotation into 

account. As a satellite moves from its southernmost latitude to northernmost latitude (a 

"pass"), the swath width will include a certain fraction g of the latitude line passing 

through a target. Washburn's equations determine this fraction g, but require that the 

swath width of the satellite pass be small (Washburn, 1997). 

This thesis work is intended to develop a new mathematical formulation to 

improve on the Wertz and Washburn models. Our preliminary work will be to examine 

both procedures. The new method will assume that times of target detection are given by 



a nonhomogeneous Poisson process with rate at time t of p{t) = f(A(t),ßx(t),ß2(t)), 

where Mt) is the angular distance between the target and subsatellite point, ß,(t) is the 

great circle bearing from the target to the subsatellite point, and fr(t) is the great circle 

relative bearing from the subsatellite point to the target. When dependence on ß, and ßi is 

not strong, then detection rate can be express as a function of only Ä(t). In these cases, the 

probability of detection during a single pass can be expressed as a function of the 

minimum angular distance between the target and subsatellite point. We will develop a 

numerical procedure to compute local minima of Ä(t) for use in the lateral range curve 

models. 

The foundations of satellite orbital mechanics are introduced in Chapter n, 

BACKGROUND THEORIES. Chapter m, MODEL DEVELOPMENT, details the 

crucial parameters affecting the satellite's detection rate. The method of determining the 

minimum value of angular distance is also discussed. Four analytical models for 

estimating the probability of detection of a target by a surveillance satellite are tested and 

compared in Chapter IV, EXPERIMENTATION AND RESULTS. Finally, Chapter V, 

CONCLUSIONS, summarizes the models being developed, draws conclusions and 

suggests areas of further research. 



II. BACKGROUND THEORIES 

This chapter provides the basics of Earth satellite orbital mechanics and discusses 

Wertz's and Washburn's probability of detection models. 

A.       SATELLITE ORBIT 

1. Reference System 

In dealing satellite orbits, it is important to select an appropriate coordinate 

system. If the correct coordinate system is selected, the development of equations of 

motion can be simple. Of the many possible coordinate systems, we will use a geocentric 

coordinate system fixed in inertial space. 

In this coordinate system, the equatorial plane is used as a primary plane, and the 

meridian passing through Greenwich, called a prime meridian, is used as a secondary 

plane. The origin of the system is the center of the Earth. A position in this coordinate 

system is determined by latitude (y/), and longitude (L), defined in the usual way and 

illustrated in Figure 2.1. 

2. Laws of Motion 

In order to understand and predict satellite motion, it is necessary to know the 

basic laws defining satellite motion. The most well-known laws are Kepler's Laws, 

Newton's Law of Motion, and Newton's Universal Law of Gravitation. 

Johann Kepler (1571-1630) empirically discovered three laws of planetary motion 

by studying the detailed observational record of Tycho Brahe (Vallado, 1997). They are: 



First law:        The orbit of each planet is an ellipse, with the Sun at one 

focus. 
i 

Second law:    The line joining the planet to the Sun sweeps out equal 

areas in equal times. 

Third law:       The square of the period of a planet is proportional to the 

cube of its mean distance from the Sun. 

Figure 2.1 Geocentric Coordinate System (Vallado, 1997) 

The laws apply to a satellite revolving around the Earth as well as planets revolving 

around the Sun. 

Kepler's Laws did not completely solve the planetary motion problem. Isaac 

Newton (1642-1727) introduced his additional three laws of motion to help solve 

problems about the dynamics of motion (Vallado, 1997). They are: 



First law:        A body continues in its state of rest, or of uniform motion 

in a straight line, unless compelled to change that state by 

forces impressed upon it. 

Second law:    The change of motion is proportional to the motive force 

impressed and is made in the direction of the right line in 

which that force is impressed. 

Third law:       To every action there is always opposed an equal reaction 

or, the mutual actions of two bodies upon each other are 

always equal and directed to contrary parts. 

The motions of satellites and planets are primarily driven by gravitation. Newton 

formulated the Universal Law of Gravitation to describe gravitational force between two 

bodies. Newton's Universal Law of Gravitation states that the force of gravity between 

two celestial bodies is directly proportional to the product of their two masses and 

inversely proportional to the square of the distance between them. Symbolically, 

Fg=^, (2-1) 

where 

Fg       = gravitational force in Newtons (AO, 

G        = universal gravitation constant = 6.67x10"'! Nxm2/kg2, 

mit ni2 = mass of two bodies (kg), and 

R = distance between the two bodies (m). 



One of Newton's achievements was to show that Kepler's Laws follow from Newton's 

Laws of Motion and Universal Gavitation. 

3.        Orbit Types 

As Kepler did, we will assume here that all satellite orbits are elliptical or as a 

special case, circular. "Keplerian" orbits ignore the gravitational effects of the Earth's 

equatorial bulge and atmospheric drag. 

a.        Elliptical Orbit 

(1) Geometry of an Elliptical Orbit Figure 2.2 illustrates the 

geometry of an elliptical satellite orbit. It has two distinct foci. One is called the primary 

focus and coincides with the center of the Earth. The semi-major and semi-minor axes are 

a and b, respectively. Half the distance between the two foci is c. The farthest point and 

the nearest point from Earth in an elliptical satellite orbit are called apogee and perigee, 

respectively. Ra is the radius of an apogee, the maximum distance between the Earth's 

center and the satellite. And the minimum distance Rp is the radius of a perigee. R is a 

satellite position vector relative to the center of the Earth. V is a satellite velocity vector 

relative to the center of the Earth. The flight-path angle ($ is the angle between the 

velocity vector and a line perpendicular to a satellite position vector R. The true 

anomaly,# locates a satellite's position in the orbital plane. It is measured from the 

perigee to a satellite position vector R in the direction of satellite motion. 



Figure 2.2 Orbit Geometry (Larson & Wertz, 1992) 

The motion of a satellite orbiting the Earth can be represented as 

the polar equation of a conic section. 

a(\-e2) 
R 

l + ecos# 
(2-2) 

where R = magnitude of the position vector R, 

a = semi-major axis (km), 

e = eccentricity , given by e = — ,and 
a 

0- true anomaly or the polar angle. 

This equation is appropriate for both circular (e=0) and elliptical (0 < e < 1) orbits. 



(2) Elements  of an  Elliptical  Orbit  Six  classical  orbital 

elements are required to specify a satellite orbit and the satellite position on that orbit. 

These elements allow us to visualize orbital size, shape, and orientation. Figure 2.3 

illustrates the six classical orbital elements. 

satellite's 
position^- ö 

jjr       equinox 
direction 

Figure 2.3 Classical Orbital Elements (Sellers, 1994) 

The semi-major axis, a, has already been discussed. The second 

element is the eccentricity, e. It describes the shape of orbit, and is computed as e = — . 
a 

For closed orbits, 0 < e < 1. The circular orbit has an eccentricity of 0. The inclination i is 

the angle between the equatorial and orbital planes. The right ascension of ascending 

node {£7} (or a longitude of the ascending node) is the angle measured on the equatorial 

plane eastward from the Vernal Equinox to the ascending node. The ascending node is the 



point on the equator at which the satellite is leaving the Southern Hemisphere and 

entering the Northern Hemisphere. The right ascension varies from 0 to 360 degrees, co is 

the argument of perigee. It is the angle measured from the center of the Earth and is in the 

orbital plane in the direction of satellite motion from an ascending node to perigee, co is 

used to describe the orientation of a semi-major axis of an orbit relative to the equatorial 

plane. The argument of perigee varies from 0 to 360°. The last element, <9(true anomaly) 

is the angle measured from perigee to the satellite's position vector in the direction of 

satellite motion. The true anomaly describes the satellite current position relative to the 

location of the perigee. Its value varies from 0 to 360°. 

b. Circular Orbit 

The circular orbit can also be described by using the six of the classical 

orbital elements as mentioned earlier. However, some elements are ambiguous. 

Specifically, the circular orbit has no perigee, hence it has no argument of perigee and 

true anomaly, since both use the perigee as a reference point. Figure 2.4 illustrates the 

circular orbit. Note that if a circular orbit is considered as the limit of elliptical orbits, 

then the perigee and apogee can be specified as limits. 

It is common to specify satellite position in circular orbit with polar coordinates 

(Colwell, 1983). The radius of satellite orbit, R, and the orbital true anomaly, 9, are given 

by equation (2-3) and (2-4), respectively. 

R = RE+Hs (2-3) 

6 = 6t (2-4) 



where RE = radius of the Earth (6378 km) 

Hs = altitude of satellite 

t = time that a satellite travels from an ascending node to 

satellite position vector. 

Figure 2.4 Circular Orbit 

The angular velocity in circular orbit is given by 

»=,/-£. R3 

and the corresponding orbital period, T, is 

T = 2TT 

(2-5) 

(2-6) 

where ju = Earth gravitational constant (3.9860x10   mVsec2) 

10 



4.        Satellite Ground Track 

The satellite ground track is defined as the path of the subsatellite point over the 

Earth's surface (Colwell, 1983). Consider a satellite in a circular orbit at an altitude of Hs 

and inclination i. Figure 2.5 illustrates the spherical triangle for determining a subsatellite 

point. The latitude (y/s) and longitude (Ls) of a subsatellite point are determined from 0 

by solving the spherical triangle NSL in Figure 2.5 to obtain, 

sin^s = sin/ sin 0 (2-7) 

tanL5 =cosz'tan# (2-8) 

Figure 2.5 Determination of Subsatellite Point (Cowell,1983) 
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B.       ORBITAL COVERAGE 

The coverage region at any point in time is that part of the Earth which the 

satellite can "see". For the simple case of a spherical cap coverage region, the boundary 

of the coverage region can be specified by the Earth central angle, A, measured at the 

center of the Earth from subsatellite point to the target. Figure 2.6 illustrates this 

geometry. It is often the case that the maximum A is determined by the minimum 

elevation angle, £ that allows the satellite to detect the target. 

1.        Target Elevation Constraint 

A target is visible to a satellite only if the elevation angle £ measured at the target 

between the satellite and the local horizontal satisfies equations (2-9) or (2-10) (see 

Figure 2.6). For a satellite at altitude Hs and elevation angle £ the equation for A is 

(Wilkinson, 1994): 

n 
A = f-sin-1 

2 
REcos^ 

= cos 
REcos<^ 

RE+HS 
-z 

(2-9) 

(2-10) 

2.        Horizon Constraint 

The maximum angular radius of the coverage region is AH, which satisfies 

Rr cos A, 
RE +HS 

(2-11) 

Figure 2.6 illustrates the geometry of orbital coverage. 

12 



True outer horizon Target 

/    *A\3{ 
• 

1                                  />^\K    \ 
Parth'o   Lr            1            1 

t                         '     ^^5>^ 
Satellite 

1                 «enter                              / - 

HS 

>v                                     >^ »ubsatelltte point, SS/> 

Figure 2.6 Coverage Angular Radius (Larson & Wertz,1992) 

C.       FRACTION OF COVERAGE EQUATIONS 

1.        Wertz's Equations 

Wertz derives coverage as a function of latitude, y/j, for a satellite in a circular 

orbit at inclination i when Earth's rotation is ignored. He assumed that observations can 

be made at any angular distance less than or equal to A^nax on either side of the satellite 

ground track. The latitude is also assumed positive (i.e., in the northern hemisphere). 

"Depending on the latitude, there will be either no coverage, a single long region of 

coverage, or two shorter regions of coverage for each orbit as follows" (Larson & Wertz, 

1992): 

13 



Latitude Range Number of Coverage Regions Percent Coverage 

A-max + 1 <VT                                                       0 0 (2-12a) 

i -^max < VT < i+^max                                    1 ^y/180 (2-12b) 

0 < V)/T < i -A.max                                    2 &/180 (2-12c) 

,                           .     cos / sin wT - sin /L 
where              cos^, = — 222-, and 

sin/cos (//y 
(2-13a) 

,      cos/sin ^r +sin/lmax 
pfK/n   —                                     max 

(2-13b) 
sin r cos y/T 

where fa and fa are one-half the longitude range over which coverage occurs. Figure 2.7 

illustrates regions of coverage for each orbit. 

??rT- 

No coverage 

One coverage region 

Ground trace 

■ Two coverage regions 

Figure 2.7 Regions of Coverage (Larson & Wertz, 1992) 
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2.        Washburn's Equation 

Washbura proposed a method to calculate the fraction g of latitude line covered 

during one satellite pass. If the target's longitude is uniformly distributed over the latitude 

line, this fraction is a probability of detection. Unlike Wertz's method, this derivation 

assumes a rotating Earth (Washburn, 1997). 

Under the assumption that the radius of the satellite coverage is small (i.e., ?^rnax 

« ii), the fraction of latitude line covered as a function of y/T, CUE, i, and Ainax is given by 

g{¥T,coE,Umzx) = —4p  (2-14) "T '"■'£>t>'"max - .      n 
TU sm. ß cosy/T 

where ß = arctan 

r     /   •    2  • ~2 ^ y sin i- sin  y/T 

cosi-o)Fcos2 u/T v b J 

, y/T is target's latitude, and y/j < i. The angle ß is 

determined by the velocity of the satellite relative to the Earth. Earth's rotation rate, CUE, 

in terms of radians of rotation per radian of anomaly is determined by coE = —, where Q 

is the repetition factor. 

15 
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III. MODEL DEVELOPMENT 

A.       GENERAL ASSUMPTIONS FOR MATHEMATICAL MODEL 

DEVELOPMENT 

A real satellite orbit can be quite complex. It is not exactly elliptical for many 

reasons, but mainly because of the Earth's equatorial bulge and atmospheric drag. 

However, in order to make our computation possible, some assumptions, but as few as 

possible, are made. In our work, the following assumptions are used: 

i.)        the Earth is a sphere, 

ii.)       the mass of a satellite is negligible compared to the mass of the Earth, 

iii.) the Earth and the satellite are the only two heavenly bodies in the system, 

and iv.) gravity is the only force acting along a line joining the centers of the Earth 

and the satellite. 

The intent of this thesis is to develop an initial tool for evaluating a surveillance 

satellite so that the decision-maker can choose good orbital parameters for a particular 

mission. The primary emphasis is on circular orbit, as it is used in most military 

applications such as the space shuttle, geo-synchronous satellites, and sun-synchronous 

reconnaissance satellites (Friedman et al., 1985). 

17 



B.       DETECTION PARAMETERS 

In a search and detection model of a surveillance satellite, the detection rate of the 

satellite (p), defined as the mean number of detections per unit time, is a function of 

many variables. In this analysis, we assume that at time t, 

p(t) = fU(t),ß](t),ß2(t)), (3-1) 

where • 

Mt) = angular distance between subsatellite point and target, 

ßi(t) = target azimuth angle, great circle bearing of the subsatellite point from the 

target, and 

ß?(t) = sensor azimuth angle, spherical angle measured at the subsatellite point 

between the direction of motion of the subsatellite point and the target. Figure 3.1 

illustrates the above three variables. 

Assuming that the times of detection are given by a Poisson process with rate p(f) 

at time t, the probability of a detection, Pd, in time interval [th t2] is 

- ]pU)dt 

Pd{t„t2) = \-e '• (3.2) 

In the following section, we will derive expressions for Ä(t), ßi(t), and ßz(t). 

1.        Angular Distance 

Washburn developed the following expression for the angular distance, Ä, as a 

function of time (Washburn, 1997). 

Mt) = cos"1 [cos(^r )cos(Lr )cos(6>)+cos(^r )sin(Lr )cos(/)sin(0)+sin(^r )sin(i)sin(ö)] (3-3) 

18 



where 

y/T = latitude of a target on the Earth, 

LT = longitude of a target on the Earth, and 

9= orbital true anomaly. 

P subsatellite 

target 
point 

latitude 

/C ßi S / 

\ ^& - \ / ß2 \ :. 
"^"--4: 

T 

\   i 

equator 

\ 

Figure 3.1 Detection Parameters 

From equation (3-3), by taking the Earth's rotation into account, and assuming the 

target to be stationary, the geographical coordinate (y/T, LT) of the target becomes 

T   -T      L 
(3-4) 

19 



where Q is the number of satellite orbits that correspond to one rotation of the Earth (the 

repetition factor). y/0 and L0 are the target's latitude and longitude when 0=0. Notice that 

the Earth's rotation only affects the longitude of the target. 

As an example, consider a satellite with an orbital radius of 6700 kilometers, an 

inclination of 50°, and period of 5458 seconds. The target's latitude is 10° N and 

longitude at time t = 0 is 70° W. The following figure shows the variation of the angular 

distance as a function of orbital true anomaly (0). 

3.5 

Figure 3.2. Angular Distance and Anomaly 

The angular distance is a periodic function. If y/T < i and assuming a fixed orbital 

plane, then twice each sidereal day the target rotates through the satellite orbital plane, 

and "close" passes are possible. 
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2.        Target Azimuth Angle 

We now derive an analytical expression for target azimuth angle (/?;). Our concept 

is that the target is visible to a satellite only if the target azimuth angle is appropriate. 

This models the fact that natural or man-made objects in the vicinity of the target can 

affect the detection rate. 

Our convention is that the target azimuth angle ßi is measured eastward from 

north (in the Northern Hemisphere) from the target to the subsatellite point. Figure 3.3 

illustrates the spherical triangle for determining the target azimuth angle ßj. 

target 
latitude 

subsatellite 
point 

ground 
track 

Figure 3.3 Determination of Target Azimuth Angle 

Given geographic coordinates of a target,  y/r and LT, and a position of the 

subsatellite point (if/s, Ls). The target azimuth angle can be expressed mathematically as 

the following equation (see also APPENDIX B). 
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A -i cos 
i(6>) sin(z') - sin(^r) cos(/l) 

cos(^r) sin(/l) 
(3-5) 

where (9 is calculated by equation (2-4) and the angular distance (A) is determined-by 

equation (3-3). ß, is less than 180 degrees if target is west of the subsatellite point, and 

greater than 180 degrees if target is east of the subsatellite point. 

3.        Sensor Azimuth Angle 

A detection can occur only if the satellite's sensors are pointed towards the target. 

More generally, we assume that the detection rate, p, is a function of the sensor azimuth 

angle, p\. This allows modeling of the satellite sensors which are not omni-directional, 

such as in a side-looking airborne radar (SLAR) (Larson and Wertz, 1992). 

An expression for fc can be derived by solving the spherical triangle PTS and 

PAS, using the spherical trigonometry Law of Cosine for Sides (see Figure 3.4). 

Assuming that geographical coordinates of a subsatellite point and a target are 

known, p\ can be expressed as (see also APPENDIX C) 

ß2=27T-(rj + a), (3-6) 

where 77 and a are 

7 = cos 
sin(^r) - sin^) cos(A) 

cos(^s) sin(/t) 
(3-7) 

a = sin 
cos(f) 

cos(^5) 
(3-8) 

Here y/s (latitude of subsatellite point) is determined by equation (2-7). 
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Figure 3.4 Determination of Sensor Azimuth Angle 

C.       PROBABILITY OF DETECTION 

We assume that detections of the target occur according to Poisson process with 

detection rate p(t) at time t (Washburn, 1996). Further we assume that p(t) is a known 

function /of A, ßi, and y%. Then the mean number of detections occurring between times 

tj and ti is 

ju= ]f(Mt),M),ß2(t))dt, (3-9) 

and the probability of one or more detections is 

l-e-" . (3-10) 

Some modelling simplifications occur if we further assume a symmetric satellite 

sensor and that the target is equally visible from any angle. Then it may be reasonable to 
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say that the probability of detection during a particular satellite pass is only a function of 

the minimum angular separation (or "lateral range") between the target and the 

subsatellite point. 

In this work, we present a procedure for determining the minimum angular 

distance occurring during one satellite pass. Then we can use a sensor's lateral range 

curve to find a probability of detection. The lateral range curve, l(x), is the conditional 

probability of detection, given that target's range at CPA is x (in this case, Xmin). The 

lateral range curve is neither a probability density function nor a cumulative distribution 

function. It is a plot of conditional probabilities which depend on the target, 

environmental conditions and the satellite sensors. (United States Naval Institute, Naval 

Operation Analysis, 1989) 

D.       MINIMUM VALUE OF ANGULAR DISTANCE 

To approximate probability of detection by applying the satellite's sensor lateral 

range curve, the most important step is to determine the range of a target at CPA. We 

have been unable to find an analytical expression for the minimum value of angular 

distance (Xmin). But we can use numerical methods to approximate the solution. After 

trying several procedures, Newton's method was selected, since the function of Mt) is 

nonlinear, but the second derivative is available. 

Newton's method is based on exploiting the quadratic approximation of the 

function X at a given point <% (Bazaraa, Sherali, & Shetty, 1993). This quadratic 

approximation q is given by 
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q(0) * A(0k) + A\0k )(0 - 9k) + ^A"(0k )(0 - 0k f (3-11) 

The point 6^+y is taken to be the point where the derivative of q is equal to zero. This 

yields 

A\0k) + A\0k){0M-0k) = O (3-12) 

so that, 

*+1      L    A\0k) 

The following is a summary of Newton's method to find the angular distance 

function A. 

Initialization Step: Choose a scalar £«1 to be used for terminating the iterations. 

Choose the initial point at anomaly 0}, sufficiently close to optimal value 0, found by 

graphing the angular distance against the orbital true anomaly 0 (see Figure 3.2). The 

CPA is in general different for every pass of a satellite over a target, so it is necessary to 

provide an initial value for the method for every satellite pass. The second initial value is 

the first optimal value 0 \ plus 2n. The third initial value is the second optimal value 02 

plus an interval between the first and second optimal values, (02-0 0, and so on. 

Main Step: 

1.        Let 0k=0, and evaluate A'(9k) andA"(04). 

Let 0k+x =0k- 
r(0k) 
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The procedure is terminated when \ok+-6k ||< s. Otherwise, replace k by k+1 

and repeat step 1. 

Checking Step: Let #=<%+/ and evaluate A"(§). If Ä"(3) > 0, the optimal value 

occurs at 0, and then the minimum A. is determined by evaluating X at §. 

As an example, suppose a satellite is in circular orbit at an altitude of 6640.4 km, 

an inclination of 65°, period of 5385.3 seconds, and Q of 16. A target will be assumed at 

geographical coordinates of (\|/T = 55°, LT = 120°). Figure 3.5 shows the relationship 

between the angular distance and the anomaly. 

Now, evaluate the minimum value of the angular distance A^ by using Newton's 

algorithm. From equation (2-11) with horizon constraint, a detection is possible if the 

range of a target is less than or equal to 0.311 radian {X^ on either side of satellite 

ground track. The lateral range curve of the sensor mounted on the satellite is assumed to 

be 

l(x) = 0.25e~0-25lxl , if - 0.311 < x < 0.311 

= 0 , otherwise 

where x is the lateral range or the range at CPA. 

The numerical values for this problem are shown in the table below. Figure 3.6 

shows the probability of the target being detected versus CPA time. Figure 3.7 illustrates 

the cumulative probability of detection (CPD) in one sidereal day. In this example, the 

satellite makes  16 orbits in one sidereal day. Therefore, the ground track of the 

subsatellite point repeats each sidereal day, as do the target detection probabilities. 
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3.5 

60 
Anomaly (radian) 

Figure 3.5 Angular Distance against Anomaly 

120 

pass anomaly 

(radian) 

time 

(min) 

CPA 

(radian) 

probability of 

detection 

cumulative 

probability 
of detection 

1 2.01 28.7 0.1077 0.2434 0.243 
2 8.30 118.6 0.1124  . 0.2431 0.427 
3 14.76 210.8 0.2857 0.2328 0.561 
4 21.09 301.2 0.5069 0.0000 0.561 
5 27.33 390.3 0.7282 0.0000 0.561 
6 33.45 477.8 0.9201 0.0000 0.561 
7 39.43 563.2 1.0351 0.0000 0.561 
8 45.34 647.6 1.0238 0.0000 0.561 
9 51.34 733.4 0.8919 0.0000 0.561 
10 57.48 821.2 0.6924 0.0000 0.561 
11 63.74 910.5 0.4694 0.0000 0.561 
12 70.07 1000.9 0.2504 0.2348 0.664 
13 76.40 1091.3 0.0939 0.2442 0.746 
14 82.86 1183.6 0.1133 0.2430 0.808 
15 89.41 1277.3 0.1682 0.2397 0.854 
16 95.97 1370.9 0.1602 0.2402 0.889 

"able 3.1 Closes t Point of Appro* ich and Probabl ity of Detection 
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Figure 3.6 Probability of Detection versus Time 
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Figure 3.7 Cumulative Probability of Detection versus Time 
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IV. EXPERIMENTATION AND RESULT 

A.   EXPERIMENTATION 

In this section, we test four analytical models for estimating the probability of 

detection of a target by a surveillance satellite. We will look at two lateral range curve 

models, an Earth coverage model developed by Wertz, and the detection rate model 

proposed by Washburn. 

For the lateral range curve models, the probability of detection, pave, is 

k 

p    =J=i  (4-1) fave 7 v ' 
K 

where pt is the probability of detection at the ith CPA, and k is the number of CPA's 

occurring during one "repetition period" of satellites orbits. That is, if the repetition factor 

tn 
Q is rational and equal to —, where m and n are positive integers, then exactly m orbits 

n 

occur in n sidereal days. And then k is the number of CPA's occurring in either m orbits 

or n days. 

From the fact that detection is possible only if the angular distance is within a 

specified field-of-view (FOV) of the satellite, the satellite can detect the target only if the 

range to the target is less than or equal to Amax on either side of satellite ground track. To 

compare the solutions resulting from these four models, we have assumed that 1^ is 

equal in all computations. We have chosen to investigate a satellite at altitude Hs of 262.4 

km (radius of satellite orbit = 6,640.4 km) with the inclination i of 65°, period T of 
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5385.3 seconds, and Q of 16. This is because most surveillance satellites are in low earth 

orbit at an altitude of less than 2000 km, and an inclination between 60° to 104° (Vallado, 

1997). A satellite orbiting in this inclination ranges will cover the largest portion of the 

Earth. For communications, the elevation angle from the target horizon must be more 

than 5° (Larson and Wertz, 1992). In our problem, the satellite's assumed minimum 

useable elevation angle is 10°, resulting in a maximum angular distance (4„) of 0.174 

radian from equation (2-10). 

For the first two models, Newton's method (explained in Chapter HI) is used to 

compute k minimum angular distance values for each chosen latitude. The target's 

latitude and longitude and the sensor's lateral range curve are assumed to be known. 

In the first model, we assume the sensor's lateral range curve is 

lx (JC) = 0.85e"a85W , if - 0.174 < x < 0.174 

= 0 , otherwise 

where x is the angular distance in radians at the closest point of approach (CPA). This 

function will provide a probability of detection for each angular distance at the CPA. 

Figure 4.1 illustrates the lateral range curve lj(x). 

In the second model, we assume that the sensor's lateral range curve is that of a 

cookie-cutter sensor. The probability is equal to 1 when the target is within the -?imax to 

fl if-0.174<x< 0.174 

[0 otherwise 

where x is the angular distance at CPA. 
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Figure 4.1 Lateral Range Curve 

In the third model, we again assume that /U^ is equal to 0.174 radian. Also, we 

assume that the target is uniformly distributed over longitude, in order to make the 

percent coverage a probability of detection. Equations (2-12a) to (2-13b) are used to 

compute the percent coverage as a function of latitude for both the one-coverage region 

and two-coverage region (mentioned earlier in Chapter II). For this particular problem, 

the one-coverage region covers from latitudes 55° to 75° (i-Amax to i+Amax), and the two- 

coverage region covers from 0° to 55°(i-A.max). The no-coverage region falls into the 

latitude range greater than 75°(i+Amax). 

In the last model (equation (2-14)), the same /U« (0.174 radian) is used to 

compute the fraction of the latitude line passing through the target that is covered by the 

satellite sensor. Following Washburn's concept, the target's longitude is assumed to be 
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uniformly distributed, and the fraction of the latitude line covered becomes a probability 

of detection. 

Although the probability of detection can be computed continuously along the 

orbit at all latitudes, target latitudes of 0, 15, 30, and 50 degrees in the two-coverage 

region; 55, 64, 65, and 70 degrees in the one-coverage region; and 75, and 80 degrees in 

the no-coverage region are chosen for the demonstration of Model 3. These target 

latitudes are also used for the computations of Models 1, 2, and 4, so that the results are 

comparable. Notice that targets in this work are located only in the Northern Hemisphere. 

The same technique can be used to compute the probability of detection in the Southern 

Hemisphere. 

B.       RESULTS 

The results of the computations are tabulated in Table 4.1. The probability of 

detection for Model 1 (second column in Table 4.1) increases as the target's latitude 

increases from 0°, and it reaches the maximum probability at the latitude of 55°. After 

55°, the probability decreases and becomes zero when the target's latitude is greater than 

or equal to 75°, which coincides with i+?^max. If we borrow the one-, two-, and no- 

coverage region definitions from Model 3 to discuss Model l's results, we can say the 

following. The Model 1 probability of detection increases until it reaches a maximum 

value at the northern edge of the two-coverage region (0 <y/j<i-^max)- The Model 1 

probability then decreases, reaching 0 at the northern edge of the one-coverage region. 
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Target's 
latitude 

Model 1 

/,(x) = 0.85e-°85X 
Model 2 

fl,if0.174<x< 0.174 
l2(x) = \ 

[0 otherwise 

Model 3 Model 4 

0 0.103 0.133 0.122 0.119 
15 0.108 0.133 0.128 0.124 
30 0.142 0.188 0.147 0.143 
50 0.191 0.250 0.242 0.223 
55 0.286 0.375 0.378 0.278 
64 0.251 0.313 0.326 0.926 
65 0.249 0.313 0.315 NA 
70 0.190 0.250 0.243 NA 
75 0.000 0.000 0 '   NA 
80 0.000 0.000 0 NA 

Table 4.1 Average Probability of Detection 

The Model 2 probabilities of detection (column 3 in Table 4.1) are 0.133 for target 

latitude 0° and 15°, and then increase to a maximum value of 0.375 for a target latitude of 

55° (first point of the one-coverage region). The Model 2 probabilities of detection then 

decrease with increasing target latitude until 75° (the most southern latitude in the no- 

coverage region), where it becomes 0. 

We note that for the first and second models, there can be more CPA's than orbits. 

This happens because two CPA's are possible during the orbit where the angular 

separation between the target and the orbital plane is maximal. However, the probability 

of detection is zero in this orbit because the angular distance is generally greater than 

In the third model (Wertz's model), the probability of detection behaves in the 

same way as in the first model. That is, it increases with target latitude. It reaches the 

maximum value at 55°, the most southern latitude of the one-coverage region. Then, it 

decreases for target latitudes greater than 55°, until it becomes zero at 75°. The same 

33 



explanation regarding the one-, two-, and no-coverage regions discussed in the second 

model is also valid here. 

The probability of detection in Model 4 (Washburn's model) increases and 

decreases in a different way from the others. As shown in column 4 of Table 4.1, it keeps 

increasing monotonically with the target latitude until becoming indeterminate for 

latitude equal to the orbital inclination of 65°. This occurs because angle ß'm equation (2- 

14) becomes 0 at \j/T- 65°, which causes the denominator to vanish. 

C.       DISCUSSION OF RESULTS 

The probabilities of detection at the same target latitude are different when using 

the four different models. Model 3 by Wertz is commonly used and is well-known. It 

assumes a non-rotating Earth. This is reasonable for a satellite in a very low orbit where 

the Earth's rotation can be ignored. The probability of detection computed from this 

model always has the same value for the same target latitude regardless of environmental 

conditions, the target's longitude, and the satellite ground track position. One should 

probably expect a change in the probability of detection for different ground track 

positions, but this does not occur for Models 3 and 4. 

In our newly developed techniques (Models 1 and 2), the probability of detection 

follows the same pattern as that of Model 3. The Models 1 and 2 results are close but not 

exactly equal to those of Model 3, because we have used a specific lateral range curve. In 

a real military mission, a different lateral range curve would be used. 

34 



An important feature of Models 1 and 2 is that the probabilities of detection 

change as the satellite ground track is changed. Depending on the application, this could 

be an improvement over Models 3 and 4. The variation of the probability of detection 

with respect to the satellite ground track location is useful when one needs to know the 

detection probability for a specific target location instead of an average one over an entire 

latitude line. 

In Models 1, 2, and 3, the probability of detection in the one-coverage region is 

relatively higher than that of the two-coverage region. The high probability in the one- 

coverage region agrees well with Clark's (1966) and Washburn's (1997) observations. 

They have shown by the mathematical formulations that the time that a satellite spends at 

the extreme latitudes is greater than at the lower latitudes. They have also suggested that a 

target whose latitude is slightly smaller than i (i.e., in the one-coverage region) should be 

easiest to find. This is because the density of the satellite's latitude (defined by Washburn 

(1997)) is greatest there. 

In Model 4 by Washburn, the Earth's rotation has been taken into account. The 

probability of detection is computed in a conceptual manner similar to the Wertz 

technique. While the Wertz technique takes the percentage of coverage as the probability 

of detection, Washburn takes the fraction of the latitude line covered as this probability. 

This results in the probability of detection always having the same value for targets at the 

same latitude, regardless of environmental conditions, and the target longitude. Also, 

when the target latitude {y/T) is equal to the satellite inclination (/), equation (2-14) gives 

an indeterminate value. It is preferable that Washburn's technique be applied when 
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^<<;r(Washburn, 1997). It is also observed that the Model 4 probability of detection 

is close to 1 when y/T approaches I This apparently suggests that the satellite almost 

completely covers the latitude line. A potentially more accurate model would have been 

g = mm 
W 

2TTRCOSI//T   IrrRcosy/j 

where L is the length of the satellite sensor foot print. 

(4-4) 
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V. CONCLUSIONS 

A. CONCLUSIONS 

Satellite surveillance systems play a significant role in today's search and 

detection missions. Probability of detection is a useful measure of effectiveness for 

satellite surveillance systems. Wertz (1992) and Washburn (1997) proposed two 

analytical models to estimate the probability of detection. This thesis work developed a 

new mathematical formulation to improve on the Wertz and Washburn models. 

The new methods proposed here are based on the classical search ideas of 

detection rate and lateral range curves. The new methods are preferred over the Wertz and 

Washburn methods when it is desired that the satellite model be sensitive to the target's 

longitude, environmental and geographic conditions in the vicinity of the target, or 

azimuthal sensitivity of the satellite sensor. 

B. SUGGESTION FOR FURTHER STUDIES 

Possible areas of future work include: 

• Investigating   functional   forms   for   p(t) = f{Ä(t),ßx(t),/?2(f)), which   are 

realistic and specific to a particular sensor/target system. 

• Finding an analytical expression for the minimum value of angular CPA 

distance. 
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APPENDIX A: SPHERICAL GEOMETRY FORMULAS 

This appendix provides a summary of basic rules. [Extracted from Larson & 

Wertz, Space Mission Analysis and Design, 1992]. 

A right spherical triangle is one with at least one right angle. Any two of the 

remaining components, including the two remaining angles, serve to completely define 

the triangle. Napier's Rules provides a concise formulation for all possible right spherical 

triangles. These are listed below. 

An oblique spherical triangle has arbitrary sides and angles. Sides and angles are 

generally defined over the range of 0 to 180 degrees, although most of the spherical 

geometry relations continue to hold in the angular range up to 360 degrees. A set of basic 

rules which can be applied to any spherical triangle are given below. Finally, these 

general rules can be used to write explicit expressions for any of the unknown 

components in any oblique spherical triangle with any three components known. 

RIGHT SPHERICAL TRIANGLES 

In Table Al, the line below each formula indicates the quadrant of the answer. 

Q(A)=Q(a) means that the quadrant of angle A is the same as that of side a. "Two 

possible solution" means that either quadrant provides a correct solution to the triangle 

defined. 
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Table Al Right Spherical Triangles [Larson & Wertz, 1992] 

Given Find 
a,b cos h=cos a cos b 

Q(h)={Q(a)Q(b)}* 
tan A =tan a/ sin b 

Q(A)=Q(a) 
tan B = tan b/ sin a 

Q(B)=Q(b) 
a, h cos b= cos h/cos a 

Q(b)={Q(a)/0(h)}** 
sin A =sin a/ sin h 

Q(A)=Q(a) 
cos B = tan a/tan h 

Q(B)={Q(a)/Q(h)}** 
b,h cos a= cos h/cos b 

Q(a)={Q(b)/Q(h)f 
cos A=tan b/tan h 

Q(A)={Q(b)/Q(h)}" 
sin B =sin b/sin h 

Q(B)=Q(b) 
a, A sin b = tan a/tan A 

Two possible 
solutions 

sin h = sin a/sin A 
Two possible 

solutions 

sin B = cos A/cos a 
Two possible 

solutions 
a,B tan b= sin a tan B 

Q(b)=0(A) 
tan h= tan a/cos B 
Q(h)={Q(a)Q(B)}* 

cos A= cos a sin B 
Q(A) =Q(a) 

b,A tan a = sin b tan A 
Q(a)=Q(A) 

tan h= tan b/cos A 
Q(h)={Q(b)Q(A)}* 

cos B= cos b sin A 
Q(B)=Q(b) 

b,B sin a =tan b/tan B 
Two possible 

solutions 

sin h = sin b/ sin B 
Two possible 

solutions 

sin A =cos B/cos b 
Two possible 

solutions 
h,A sin a = sin h sin A 

Q(a)=Q(A) 
tan b = tan h cos A 

Q(b)= 
{Q(A)/Q(h)f 

tan B= 1/ cos h tan A 
Q(B)={Q(A)/Q(h)}** 

h,B sin b = sin h sin B 
Q(b)=Q(B) 

tan a = tan h cos B 
Q(a)={Q(B)/Q(h)f 

tan A = 1/tan A tan 
B 

Q(A)={Q(B)/Q(h)r 
A,B cos a =cos A / sin B 

Q(a)=Q(A) 
cos b= cos B/sin A 

Q(b)=Q(B) 
cos h= 1/tan A tan B 
Q(h)={Q(A)Q(B)}* 

jQ(x)Q(y)} = 1st quadrant if Q(x)= Q(y), 2nd quadrant if Q(x) * Q(y) 
"{Q(x)/Q(h) = quadrant of x if h < 90 deg, opposite quadrant of x if h > 90 deg. 
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OBLIQUE SPHERICAL TRIANGLES 

The following rules hold for any spherical triangle: 

The Law of Sines: 

sina sinb smc 

sin A    sin B    sin C 

The Law of Cosines for Sides: 

cosfl = cos b cos c + sin b sine cos A 

cosb = cosccosa + sine sin a cos 5 

cose = cos a cos b + sin a sin b cos C 

The Law of Cosines for Angles: 

cos A = -cos B cos C + sin B sin C cos a 

cos 5 = -cos C cos A + sin C sin A cos b 

cosC = -cos A cos i? +sin A sin 2? cose 
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APPENDIX B: FORMULATION OF TARGET AZIMUTH ANGLE 

From Figure 3.3, a target azimuth angle is given by equation (3-5). To derive this 

equation, we assume the target's coordinates (latitude y/r, longitude LT), are known. 

Latitude y/s, and longitude L$ of a subsatellite point are governed by equations (2-7), and 

(2-8), respectively. An angular distance X is determined by equation (3-3). The target 

azimuth angle is accomplished by solving the spherical triangle PTS using the law of 

cosines for the sides. The equation is 

cos 
7Z ^-^J = cos n 

VT 
n 

J 
cos X + sin y/T  sin X cos ßx 

V2 ) 

sin y/s = sin y/T cos X + cos y/T sin X cos /?, 

Rearranging equation (B-2), 

sin y/s - sin Xf/T cos X 

(B-l) 

(B-2) 

cos/?, = 
cos y/T sin X 

(B-3) 

Substituting equation (2-7) into equation (B-3), and solving for ßi, the target azimuth 

angle becomes 

/?] = cos" 
sin 6 sin i - sin y/T cos X 

cos y/T sin X 
(B-4) 
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APPENDIX C: FORMULATION OF SENSOR AZIMUTH ANGLE 

From Figure 3.4, a sensor azimuth angle ß2 can be determined by equation (3-6). 

To derive this equation, we need to determine the angle a, and angle rj. 

First, we derive the angle a. This is accomplished by solving the spherical 

triangle, PSA, using the right spherical triangle. 

sin a 
sin a = - 

sm(- - y/s) 

Substituting a with i, equation (C-l) becomes 

(C-l) 

sin a 
sin( 1) 

2 cos* 
.   ,7t .       COSU/c 

(C-2) 

Hence, 

a = sin 
• \ cosz 

cos y/s 

(C-3) 

Finally, we derive a formular for the angle 77. This is also accomplished by solving 

the spherical triangle, PTS, using the spherical law of cosine for a side. A subsatellite 

point latitude \}/s, and an angular distance X are governed by equations (2-7), and (3-3), 

respectively. The angle rj can be expressed as follows. 

cos 
K 

V2 J 
:cos — -y/s cos A + sin 

J 

n 

\- 
■y/s   sin/lcos^ 

sin y/T = sin y/s cos X + sin y/s sin A cos 77 

(C-4) 

(C-5) 

45 



cos 77 = 
sin yT - sin y/s cos X 

cos y/s sin X 
(C-6) 

77 = cos" 
sin ^r - sin y/s cos /l 

cos \f/s sin /I       y 
(C-7) 

Therefore, the expression of ß2 is 

ß2 =2?r-Tj + a (C-8) 
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APPENDIX D: FIRST AND SECOND DERIVATIVES 

The first and second derivatives of equation (3-3) are: 

dl 

d9 

(ACOS(0) 

= A'(0) = 

ß 
+ Bsir\(0)- 

Bcos(0) 

Q 
■ A cos(0 cos(ö) - sin(^) sin(0 cos(#) 

■Jl-(B + A cos(r') sin(0) + sin(^) sin(f) sin(0))2 
(D-l) 

d2Ä 

de2 = A"(0) 

Bcos(0)      Asin(0) A cos(Q sin(<9)      £ cos(Q cos(6>) 

Ö' ß ß^ ß 
+ Csin(0) 

(D-2) 

f- (D+Csm(0))z - 
(5cos(i)sin(0)   Acos(0)    _ . ^   ^     ^ 

ß ß 
(£>+Csin(6>)) 

t,(l-CD+Csin(0))2)3/2
y 

where   A = cos(^) sin(Lj + —) 

B = cos(^) cos(Lj + —) 

C = cos(^) sin(Lj + —) cos(i) + sin<y) sin(r'), and 

Q 
D = cos(^) cos(Lj H—) cos(#). 
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APPENDIX E: MINIMUM VALUES OF ANGULAR DISTANCE 

The following tables will summarize minimum values of angular distance 

occurring at time t, and anomaly 0 for targets at different latitudes. They also contain 

probabilities of detection using the lateral range curves as equations (4-2) and (4-3), and 

provide the average probability of detection in a sidereal day. 

Pass Anomaly Time 
(min) 

CPA(^min) 
(radian) 

Probability 
l,(x) 

Probability 
l2(x) 

1 2.72 38.9 0.7723 0 0 

2 9.24 132.0 0.4235 0 0 

3 15.75 225.0 0.0909 0.787 1 
4 22.12 316.0 0.3033 0 0 
5 28.60 408.6 0.6589 0 0 

6 35.26 503.6 0.9798 0 0 

7 42.52 607.4 1.1328 0 0 
8 49.65 709.3 0.9315 0 0 
9 56.26 803.7 0.6009 0 0 
10 62.74 896.2 0.243 0 0 
11 69.21 988.7 0.1298 0.761 1 

12 75.62 1080.2 0.4831 0 0 
13 82.16 1173.6 0.8272 0 0 
14 89.05 1272.0 1.0965 0 0 

15 96.46 1377.9 1.0638 0 0 
Average of probability of detection 0.103 0.133 

Table E-l Target's Latitude at 0° 

49 



Pass Anomaly Time 
(min) 

CPA(^min) 
(radian) 

Probability 
h(x) 

Probability 
h(x) 

1 2.43 34.7 0.6118 0 0 
2 8.98 128.2 0.3046 0 0 
3 15.52 221.7 0.0916 0.786 1 
4 21.85 312.2 0.3943 0 0 
5 28.27 403.8 0.758 0 0 
6 34.75 496.4 1.1212 0 0 
7 42.90 612.8 1.3885 0 0 
8    . 50.12 716.0 1.0612 0 0 
9 56.58 808.2 0.6971 0 0 
10 63.00 899.9 0.3342 0 0 
11 69.41 991.5 0.0213 0.835 1 
12 75.88 1083.9 0.3591 0 0 
13 82.45 1177.8 0.6567 0 0 
14 89.25 1274.9 0.8507 0 0 
15 96.21 1374.4 0.8305 0 0 

Average of probability of detection 0.108 0.133 
Table E-2 Target's Latitude at 15° 

Pass Anomaly Time 
(min) 

CPA(^min) 
(radian) 

Probability 
l,(x) 

Probability 
h(x) 

1 2.21 31.6 0.4205 0 0 
2 8.76 125.2 0.1678 0.737 1 
3 15.22 217.5 0.1398 0.755 1 
4 21.57 308.1 0.4607 0 0 
5 27.90 398.6 0.798 0 0 
6 34.13 487.6 1.1363 0 0 
7 39.90 570.0 1.4344 0 0 
8 44.75 639.3 1.3944 0 0 
9 50.67 723.8 1.0806 0 0 
10 56.93 813.2 0.7414 0 0 
11 63.26 903.7 0.4053 0 0 
12 69.60 994.3 0.0987 0.782 1 
13 76.11 1087.2 0.2133 0.000 0 
14 82.67 1180.9 0.4554 0.000 0 
15 89.34 1276.3 0.5962 0.000 0 
16 96.08 1372.5 0.5825 0.000 0 

Average of probability of detection 0.142 0.1875 
Table E-3 Target's Latitude at 30° 
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Pass Anomaly Time 
(min) 

CPA(^min) 
(radian) 

Probability 
l,(x) 

Probability 

1 1.9999 28.6 0.1434 0.752 1 
2 8.3457 119.2 0.1031 0.779 1 
3 14.8421 212.0 0.2575 0.000 0 
4 21.183 302.6 0.5044 0.000 0 
5 27.4322 391.9 0.7543 0.000 0 
6 33.5499 479.3 0.978 0.000 0 
7 39.4697 563.8 1.1191 0.000 0 
8 45.2789 646.8 1.1048 0.000 0 
9 51.2332 731.9 0.9444 0.000 0 
10 57.3778 819.6 0.7135 0.000 0 
11 63.6431 909.1 0.4624 0.000 0 
12 69.9807 999.8 0.2183 0.000 0 
13 76.3183 1090.2 0.0836 0.792 1 
14 82.8619 1183.7 0.1659 0.738 1 
15 89.4144 1277.3 0.2531 0.000 0 
16 95.9715 1370.9 0.2448 0.000 0 

Average of probability of detection 0.191 0.25 
Table E-4 Target's Latitude at 50° 

Pass Anomaly Time 
(min) 

CPA(?,min) 
(radian) 

Probability 
h(x) 

Probability 
l2(x) 

1 2.01 28.7 0.1077 0.776 1 
2 8.30 118.6 0.1124 0.773 1 
3 14.76 210.8 0.2857 0.000 0 
4 21.09 301.2 0.5069 0.000 0 
5 27.33 390.3 0.7282 0.000 0 
6 33.45 477.8 0.9201 0.000 0 
7 39.43 563.2 1.0351 0.000 0 
8 45.34 647.6 1.0238 0.000 0 
9 51.34 733.4 0.8919 0.000 0 
10 57.48 821.2 0.6924 0.000 0 
11 63.74 910.5 0.4694 0.000 0 
12 70.07 1000.9 0.2504 0.000 0 
13 76.40 1091.3 0.0939 0.785 1 
14 82.86 1183.6 0.1133 0.772 1 
15 89.41 1277.3 0.1682 0.737 1 
16 95.97 1370.9 0.1602 0.742 1 

Average of probability of detection 0.286 0.375 
Table E-5 Target's Latitude at 55c 
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Pass Anomaly Time 
(min) 

CPA(Xmin) 
(radian) 

Probability 
l,(x) 

Probability 
h(x) 

1 1.92 27.5 0.1063 0.777 1 
2 8.23 117.5 0.1801 0.000 0 
3 14.60 208.6 0.3329 0.000 0 
4 20.91 298.7 0.503 0.000 0 
5 27.15 387.8 0.6691 0.000 0 
6 33.30 475.7 0.8058 0.000 0 
7 39.37 562.4 0.8824 0.000 0 
8 45.41 648.7 0.875 0.000 0 
9 51.50 735.6 0.7863 0.000 0 
10 57.66 823.7 0.6427 0.000 0 
11 63.91 913.0 0.4743 0.000 0 
12 70.22 1003.1 0.3056 0.000 0 
13 76.57 1093.8 0.1586 0.743 1 
14 83.01 1185.8 0.0458 0.818 1 
15 89.46 1277.9 0.012 0.841 1 
16 95.92 1370.2 0.0065 0.845 1 

Average of probability of detection 0.251 0.3125 
Table E-6 Target's Latitude at 64° 

Pass Anomaly Time 
(min) 

CPA(^min) 
(radian) 

Probability 
l,(x) 

Probability 
l2(x) 

1 1.90 27.1 0.1052 0.777 1 
2 8.22 117.4 0.1902 0.000 0 
3 14.59 208.4 0.3378 0.000 0 
4 20.89 298.4 0.5019 0.000 0 
5 27.13 387.5 0.6617 0.000 0 
6 33.28 475.5 0.7925 0.000 0 
7 39.37 562.3 0.8653 0.000 0 
8 45.42 648.8 0.8584 0.000 0 
9 51.51 735.9 0.7739 0.000 0 
10 57.68 824.0 0.6363 0.000 0 
11 63.93 913.2 0.4743 0.000 0 
12 70.24 1003.4 0.3115 0.000 0 
13 76.59 1094.1 0.169 0.736 1 
14 83.02 1186.0 0.0608 0.807 1 
15 89.45 1277.8 0.0134 0.840 1 
16 95.88 1369.7 0.0347 0.825 1 

Average of probability of detection 0.249 0.3125 
Table E-7 Target's Latitude at 65° 
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Pass Anomaly Time 
(min) 

CPA(^min) 
(radian) 

Probability 
l,(x) 

Probability 
hM 

1 1.80 25.7 0.15 0.748 1 
2 8.15 116.4 0.2409 0.000 0 

3 14.50 207.1 0.3615 0.000 0 

4 20.80 297.1 0.4946 0.000 0 

5 27.03 386.2 0.6224 0.000 0 

6 33.21 474.5 0.7244 0.000 0 

7 39.34 562.0 0.7799 0.000 0 

8 45.45 649.3 0.7746 0.000 0 

9 51.59 736.9 0.7101 0.000 0 

10 57.78 825.3 0.6023 0.000 0 

11 64.03 914.6 0.4723 0.000 0 

12 70.32 1004.6 0.3401 0.000 0 

13 76.67 1095.2 0.2232 0.000 0 

14 83.03 1186.1 0.1408 0.754 1 

15 89.41 1277.2 0.1142 0.771 1 

16 95.73 1368.9 0.1159 0.770 1 
Average of probability of detection 0.190 0.25 

Table E-8 Target's Latitude at 70° 

Pass Anomaly Time 
(min) 

CPA(^mi„) 
(radian) 

Probability 
h(x) 

Probability 
h(x) 

1 1.72 24.5 0.2209 0 0 
2 8.08 115.4 0.2914 0 0 
3 14.41 205.9 0.3833 0 0 
4 20.70 295.7 0.4842 0 0 

5 26.95 384.9 0.5797 0 0 
6 33.15 473.6 0.6544 0 0 
7 39.32 561.7 0.6942 0 0 

8 454.48 649.7 0.6905 0 0 

9 51.66 737.9 0.644 0 0 

10 57.87 826.6 0.5648 0 0 
11 64.12 916.0 0.4674 0 0 
12 70.42 1005.9 0.367 0 0 
13 76.75 1096.3 0.2778 0 0 
14 83.10 1187.1 0.212 0 0 

15 89.48 1278.2 0.1782 0 0 
16 95.86 1369.4 0.1817 0 0 

Average of probability of detection 0 0 

Table E-9 Target's Latitude at 75° 
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Pass Anomaly Time 
(min) 

CPA(^min) 
(radian) 

Probability Probability 
l2(x) 

1 1.68 24.0 0.2931 0 0 
2 8.01 114.4 0.341 0 0 
3 14.32 204.6 0.4032 0 0 
4 20.61 294.4 0.4709 0 0 
5 26.86 383.7 0.5342 0 0 
6 33.09 472.7 0.5828 0 0 
7 39.30 561.4 0.6084 0 0 
8 45.51 650.1 0.606 0 0 
9 51.72 738.8 0.5761 0 0 
10 57.95 827.9 0.5244 0 0 
11 64.22 923.1 0.4597 0 0 
12 70.50 1007.1 0.3922 0 0 
13 76.82 1097.3 0.3318 0 0 
14 83.15 1187.8 0.287 0 0 
15 89.50 1278.5 0.2641 0 0 
16 95.85 1369.3 0.2662 0 0 

Average of probability of detection 0 0 
Table E-10 Target's Latitude at 80° 

54 



LIST OF REFERENCES 

Bazaraa, Mokhtar S., Sherali, Hanif D., and Shetty CM., Nonlinear Programming 
Theory and Algorithms, 2d ed., pp278-279, John Wiley & Sons, Inc., 1993. 

Clark, Rolf H., Evaluating a Satellite Surveillance System, Master's Thesis, Naval 
Postgraduate School, Monterey, California, October 1966. 

Colwell, Robert N. "Orbital Mechanics for Remote Sensing", Manual of Remote Sensing 
2nd ed., vol.n, American Society of Photogrammetry, 1983. 

Friedman, Richard s., and others, Advanced Technology Warfare, Harmony Books, 1985. 

Larson, Wiley J. and Wertz, James R., Space Mission Analysis and Design, 2d ed., 
Microcosm, Inc., 1992. 

Naval Operations Analysis, 2d ed. the United States Naval Institute, Annapolis, 
Maryland, 1989. 

Sellers, Jerry Jon, Understanding Space An Introduction to Astronautics, McGraw-Hill, 
Inc., 1994. 

Washburn, Alan R. "Earth Coverage by Satellites in Circular Orbit", paper presented at 
Department of Operations Research Naval Postgraduate School, Monterey, California, 
1997. 

Washburn, Alan R. Search and Detection 3rd ed, The Institute for Operations Research 
and the Management Sciensces, 1996. 

Wilkinson, C.K, "Coverage Regions: How They are Computed and Used," Journal of the 
Astronautical Sciences,Vo\A2,No.\, pp.47-70, January-March 1994. 

Vallado, David A. Fundamentals of Astrodynamics and Applications, McGraw-Hill, Inc., 
1997. 

55 



56 



INITIAL DISTRIBUTION LIST 

Defense Technical Information Center. 
8725 John J. Kingman Road, Ste 0944 
Fort Belvoir, VA 22060-6218 

2. Dudley Knox Library  
Naval Postgraduate School 
411 Dyer Road 
Monterey, California 93943-5101 

3. Office of the Naval Attache 2 
Royal Thai Embassy 
1024 Wisconsin Ave, N.W. 
Washington DC. 2007 

4. Professor J.N. Eagle (Code OR/ER) • 1 
Naval Postgraduate School 
Monterey, CA 93943 

5. Professor Alan R. Washburn (Code OR/WS) 1 
Naval Postgraduate School 
Monterey, CA 93943 

6. Professor Supachai Sirayanone (Code MR/SY) ■ 2 
3100 Pleasant Circle 
Marina, CA. 93933 

7 .        Institute of Advanced Naval Studies 2 
105/3 Salaya-Taiyawas Rd. 
Salaya, Bhuthamolton 
Nakronprathom 73170 Thailand 

LT Sarawoot Chiyangcabut 
15/102 Chokechaireummit 
Vibhavadii, Jatujake, 
Bangkok 10900 Thailand 

57 


